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1 Overview

Let’s once again restate the utility maximization problem:

maxu(x, y)

s.t.pxx+ pyy = I

As you have seen in class, when we solve this problem for general parameters, we find the demand
function. Well, as it turns out, this is called the Marshallian demand. We tend to write this as
a function of prices and income:

x⇤(px, py, I)

The choice variable here is quantity demanded and the parameters of the demand function are
simply prices and income. Turns out if we change individual parameters, we can see some cool
properties of demand functions. These notes do just that.

From the outset, I will try to make my notation as clear as possible. I will write functions in terms
of their given parameters and the parameter we change. Also, because we fancy ourselves artists
of some variety, we will have a lot of graphical interpretations. This means that we have to be
careful about the di↵erence between dependent and independent variables. Prices always go on the
vertical (y) axis whereas quantities always go on the horizontal axis (except in the case when we
graph quantities of x and y together, then those look like our standard graphs).

Let’s summarize for sake of clarity:

1. Solve for the consumer’s demand as a function of prices and income. In other words,
x(px, py, I).

2. Change one parameter of interest while holding all else constant

3. Re-solve the consumer utility maximization problem

4. Observe how xi changes as the other parameters change. This should give you a new point
on the demand curve

5. If you do this for many values of px, py, and I, you will get an o↵er curve!

2 Own-Price

It is always useful to have some end goal in mind when doing economics. This helps shape the
method of our analysis, as well as guide our interpretation of our results. In the case of own-price



demand, we ask: ”What is the relationship between the price of a good and its demand?” This
helps tremendously in a few ways. Firstly, it allows us to isolate what variable we want to see
change: own price. When we look at own-price demand, we are seeing how changes in a good’s
price changes the demand for this good.

So, mathematically, what exactly are we doing? We are plotting x(px, py, I) where I and py are
held fixed. Remember, since this is economics, we must make ridiculous assumptions about the
world, including that other prices and income do not change. In any case, when we plot x, we
are getting a demand curve. How amazing is that?! You have been studying and drawing these
things for ages, and now you get to see the foundations of them. The inverse of this curve also
has an interesting name. Can you guess it? If you guessed inverse demand, then you are correct!
Economists have no imagination except for their silly assumptions, it seems.

Let’s do a simple example using Cobb-Douglas preferences.

2.1 Cobb-Douglas Demand

I am making a number of short-cuts because at this point I hope you are comfortable with con-
strained optimization. Recall that the demand for a Cobb-Douglas function can be written as
follows:

x⇤(px, I) = x(px, py, I) =
↵

↵+ �
· I

px

We know that demand for good x does not rely on the price of y. What else do we see? Since the
price of x is in the denominator, we can also see that as the price of x increases, the demand for
good x decreases. This is just the law of demand! How splendid. But we are interested in plotting
this relationship. And since prices are always graphed on the vertical axis, we have to solve for this
function in terms of p (see the math review if you are not comfortable with this).

Our function should look like this:

px(x, I) = px(x, py, I) =
↵

↵+ �
· I
x

Not a whole lot changes. I will leave the algebra to you as an exercise. If you want to see it, come
to o�ce hours. So, now that we have that, we can finally plot this thing. Let me give you some
nice parameters so we can do that. Suppose that ↵ = .75, � = .25, px = 3, py = 1, and I = 20. If
we plug these into our own-price demand for x, we get:

x⇤(px, 1, 20) =
3

4
· 15
px

px(x
⇤, 1, 20) =

15

x⇤
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These are the demand curves for x⇤, but we could just as easily solve this for y⇤. Using the shortcut
yields:

y⇤(py, 3, 20) =
1

4
· 20
py

py(y
⇤, 3, 20) =

5

py

Let’s take a moment to see if these demand functions make sense in the first place. Notice how we
only have this relationship between prices and optimal quantity of either good. Just by looking at
our functions, we see that as the price of x or y increases, we will have a smaller value for x⇤ and
y⇤. This is really just the law of demand! As prices increase, the consumer demands fewer of that
good.

Let’s try graphing this thing! If we plot the demand curve for x, we see a standard, downward-
sloping demand curve. However, we must always remember to include px on the vertical axis. So,
technically, this is an inverse demand curve.

Now, what happens when the price of x changes? What happens to demand if px=1? What if
px=3? Or even px = 5? All we have to do is move along the demand curve to see the di↵erent
quantities demanded at each di↵erent price! As we can see in the diagram, at a px = 5, the
consumer consumes 3 x. Likewise, at a px = 1, the consumer consumes 15 x. We can verify this
algebraically using our demand function above.

Next, suppose we would like to consider a change in income. Suppose that I increases to 52. What
happens to demand when income changes? Well, as you should recall, there is an overall shift in
the demand curve. As we see, the quantity demanded increases at each and every price level! This
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gives us an outward shift in the demand curve. We can also see this using our demand function:

x⇤(px, 1, 52) =
3

4
· 52
px

x⇤(px, 1, 52) =
39

px

Above, I graph the new curve in red.
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As previously stated, the at each price level there is a corresponding higher level of demand.

Let’s now look at the price o↵er curve.1 Recall that for the o↵er curve, we must satisfy the following
condition:

(x(px, py, I), y(px, py, I)) = (
↵

↵+ �
· I

px
,

↵

↵+ �
· I

py
)

Since we already have the exponents (alpha and beta), prices and income, we can just rewrite the
expression above as:

(x(px, py, I), y(px, py, I)) = (
15

px
, 5)

Since these preferences are Cobb-Douglas, we should not be surprised to see that we have a constant
value for y when we consider changes to the price of x. Now, let’s be professional and graph this
the ”proper” way. Our Cobb-Douglas tangency condition was:

y =
�

↵
· px
py

x

Notice that there is a px in here. We want to get rid of this, so we are going to plug px into
px(x, py, I) =

↵
↵+� · I

x . This yields:

y =
�

↵
· 1

py
· ( ↵

↵+ �
· I
x
) · x

) y(x, py, I) =
�

↵+ �
· I

p2

Now, we no longer have p1 in the equation. This is what we wanted! We also do not have x. This
is also expected, since we know that the optimal y is independent of the optimal x. If we plug in
the parameters, we get that y = 1

4 · 20
1 = 5. This is the formula for the price o↵er curve!

Plotting this price o↵er curve (in black) and the optimal bundles for px = 1, 3, and5 below confirms
that each of the tangency points lies on the price o↵er curve. This creates a locus on all optimal
bundles.

3 Cross-Price

As the name implies, here we are interested in how the other price a↵ects our optimal consumption
of x and y. We want to fix own-price and income while allowing the price of the other good to vary.
This asks: how does the quantity of good i change as the price of good j changes, holding all else
constant? Interestingly, this tells us if the goods are compliments or substitutes. This o↵er curve
is called the price o↵er curve.

1I think this is also called the price consumption locus, but I am not sure. I think it’s easiest to just call these
di↵erent o↵er curves.
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3.1 Perfect Compliments

Recall that our demand functions for perfect compliments taking the form u(x, y) = min�x,↵y
can be written in the following general case:

x⇤(p, I) =
↵I

↵px + �py

y⇤(p, I) =
�I

↵px + �py

Let’s consider the following parameters: ↵ = 1
3 ,� = 1

4 , px = 3, py = 2, I = 12. Let’s just plug these
in to find the demand functions of the other price for the above parameters:

x⇤(p, I) =
1
3 · 12

1
3 · 3 + 1

4 · py
=

16

4 + py

y⇤(p, I) =
1
4 · 12

1
3 · px + 1

4 · 2
=

18

2px + 3

Notice how in the general case, since prices are in the denominator, when the price of good i rises,
the consumer will consume less good j. This tells us that the good are compliments (surprising
considering the name, huh?). In any case, we will need to plot the demand curves for both goods.

Let’s start with y as a function of px. Again, we start by solving for px which should give us the
inverse plot px(y, py, I):
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y =
1
4I

1
3 + 1

4py
=

3I

4px + 3py

) 4px + 3py =
3I

y

px =
1

4
(
3I

y
� 3py)

px(y, py, I) =
3I

4y
� 3

4
py

) px(y, 2, 12) =
9

y
� 3

2

I will plot this and comment on a few key features. I will also highlight a few important price
levels: px = 1.5, px = 3, px = 6, and px = 0. This gives us the graph below. Let’s note a few key
features of this demand curve compared to the Cobb-Douglas demand curve. Firstly, as always, we
have price graphed on the vertical axis. Secondly, although we never really consider the case px =
0 (since when are prices free in the real world?) we do see that the curve can actually touch the
x-axis! This is unlike Cobb-Douglas demand curves, which never touch the axes. This is kind of
cool, because we can imagine a situation in which the price of the compliment (other good i) is so
expensive, the consumer will just consume zero of good j. Right then, the lesson is to check the
intercepts!

Now, let’s change the price of good y and have it increase to py = 4. By the law of demand, we
expect y to decrease. Now, a more interesting question is how this a↵ects the relationship between
y and px. We see from the demand curve px(y, py, I) that a change in py only really a↵ects the
intercept of the graph – not the slope term. Likewise, if I decreases to, say, 8, we will have a flatter
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slope, demand will fall, and the relationship between y and px will increase. To see this, we will
note the new parameter changes below:

y(px, 4, 12) =
3 · 12

4px + 3 · 4 =
9

px + 3

px(y, 4, 12) =
3 · 12
4y

� 3

4
· 4 =

9

y
� 3

y(px, 2, 8) =
3 · 8

4px + 3 · 2 =
12

2px + 3

px(y, 2, 8) =
3 · 8
4y

� 3

4
· 2 =

6

y
� 3

2

From here, I will plot the change in py in red and the change in I in blue. This gives us the following
diagram.

Let’s finally do the price o↵er curve. Here, we will do the px price o↵er curve. Let’s use the same
initial parameter values above: ↵ = 1

3 ,� = 1
4 , px = 3, py = 2, I = 12. Now, our price o↵er curve is

the locus of points satisfying the following conditions:

(x(px, py, I), y(px, py, I)) = (
1
3I

1
3px +

1
4py

,
1
4I

1
3px +

1
4py

) = (
4I

4px + 3py
,

3I

4px + 3py
)
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) (x(px, 2, 12), y(px, 2, 12)) = (
48

4px + 6
,

36

4px + 6
) = (

24

2px + 3
,

18

2px + 3
)

This one is a bit harder to visualize than the Cobb-Douglas locus. So, let’s think about the formula
for the price o↵er curve. We first need the tangency condition, which for perfect complements
occurs at the kinked indi↵erence curve point.

y =
�

↵
x

Notice, then, that this does not have prices (specifically, px) in it! We are done! This is exactly the
formula for the price o↵er curve:

y(x, py, I) =
�

↵
x =

1/4

1/3
x =

3

4
x

Now, we must plot the o↵er curve as well as the optimal bundles for px = 1.5, px = 3, and px = 6.
And now we are done!
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3.2 Perfect Substitutes

Let’s finally consider a perfect substitutes example: u(x, y) = �x+↵y. We know that their demand
function should look like:

(x, y) =

8
>><

>>:

( I
px
, 0) if MUx

px
> MUy

py
,

(0, I
py
) if MUx

px
< MUy

py
,

BudgetLine if MUx
px

= MUy

py
.

This means that we can write the demand for y as a function of px as:

y(px, py, I) =

8
>><

>>:

( I
px
, 0) if MUx

px
< MUy

py
,

(0, I
py
) if MUx

px
> MUy

py
,

BudgetLine if MUx
px

= MUy

py
.

Let’s set MUx = 2 and MUy = 1. We will consider the following parameter values:

Parameters: (plot in blue)
px = 1, py = 2, I = 10

Demand : y(px, 2, 10)
8
><

>:

5 ifpx > 1,

2 [0, 5] ifpx = 1,

0 ifpx < 1.

Parameters: (plot in red)
px = 1, py = 5, I = 10

Demand : y(px, 5, 10)
8
><

>:

2 ifpx > 2.5,

2 [0, 2] ifpx = 2.5,

0 ifpx < 2.5.

Parameters: (plot in orange)
px = 1, py = 2, I = 8

Demand : y(px, 2, 8)
8
><

>:

8 ifpx < 4,

2 [0, 8] ifpx = 4,

0 ifpx > 4.

We (I) plot these graphs below. The colors are somewhat hard to see, thanks to this stupid Latex
package, but you should try drawing this yourself in the meantime. Notice how a change in I does
not a↵ect the cuto↵ value (where there is a straight line) but instead only a↵ects how much good
y is purchased. However, changes in px do change both how much y is purchased as well as the
cuto↵.
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4 Income

I am really tired at this point, but the theme of this section is similar: we want to isolate the
consumer’s income and plot it against the quantity of good x or y they demand. This asks: how
does the quantity of good i change as income changes, holding all else constant? We can call this
graph an Engel curve. The o↵er curve here is called an income o↵er curve.

4.1 Cobb-Douglas

Returning to our good friends Cobb and Douglas, we will use the same parameters as last time: ↵
= .75, � = .25, px = 3, py = 1, and I = 20. Our Engel curves are:

x(I, px, py) =
↵

↵+ �
· I

px

) x(I, 3, 1) =
I

4

y(I, px, py) =
↵

↵+ �
· I

py

) y(I, 3, 1) =
I

4

As per usual, we take the inverse of our demand function to plot it. This time, we are plotting:

) I(x, 3, 1) = 4x

) I(y, 3, 1) = 4y

I plot the Engel curves below, as well as for x(I, 5, 1) (in red) and x(I, 1, 2) (in blue). At this point,
just solve it yourself. You are more than capable and should definitely be able to before the second
midterm.

To no one’s surprise, Cobb-Douglas preferences give us normal goods! As income increases, we
demand more of the goods. We also know that a property of Cobb-Douglas is that the share of
income spent on each good stays constant. Since we hold prices fixed, this means that an increase
in income will lead to a proportional increase in quantity demanded. In other words, our Engel
curves are linear. This is what we demonstrated above.

This property is called homotheticity. The lecture slides cover this. Remind me to add this later.
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5 Compensated (Hicksian) Demand

5.1 Overview

I am going to rush through this for sake of time. The Hicksian demand is the demand we find when
we want to minimize expenditures subject to utility. What does this mean? It means we want to
minimize the amount we have to spend in order to reach some fixed utility, U .

The setup is almost the exact same as for Marshallian demand.

1. Find the tangency condition. Set MRS = px
py

2. Solve for either x or y

3. Plug value for x or y into the utility function, u(x, y).

4. Solve for xc or yc

5.2 Cobb-Douglas Example

Say we have the following utility function:

u = x2y
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Let’s just find the compensated demand:

MRS =
px
py

2y

x
=

px
py

y =
xpx
2py

So now that we have the tangency condition, we have to plug it into our new constraint: the utility
function. We know that u(x, y) = x2y, so we will have to replace y.

u = (x2
xpx
2py

)

u = (
px
2py

)x3

x3 = (
2pyu

px
)

xc = 3

r
2pyu

px

And now we have the compensated demand for good x. To find it for y, we do the same thing as
before from the tangency condition. I will leave this as an exercise for you, but you should get:

yc = 3

r
(
2py
px

)2u

5.3 Perfect Compliments Example

Say we have the following utility function:

u(x, y) = min3x, y

We know that we cannot di↵erentiate this function to find the tangency condition, so what do we
do instead? Well, this is where we have to use our economic intuition to get our compensated
demand. We know that we consume at the kink point. In other words, our optimal bundle occurs
when we equate the inner terms. If u = min 1

↵x,
1
� y, we must consume where 1

↵x = 1
� y, otherwise

we are ine�ciently consuming goods that yield no marginal utility (for further discussion, refer to
my optimal choice notes).

So we have that, written out:

u =
1

↵
x =

1

�
y

This means that our utility is just equal to both terms! Turns out that perfect compliments are
much easier in terms of finding compensated demand. Let’s refer back to our original problem.

u(x, y) = min3x, y
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u = 3x = y

Here, we know that we can just solve in terms of x and y.

yc = u

and
3x = u

xc =
u

3

There we have it! We have just solved for the compensated demand.

5.4 Perfect Substitutes Example

Say we have the following utility function:

u(x, y) = 5x+ 2y

We know that we cannot di↵erentiate this function and solve for a tangency, because these prefer-
ences are perfect substitutes. The indi↵erence curves are downward sloping lines, so they will not
have points of tangency with the budget constraint. In the case of compensated demand, we are
trying to minimize expenditures subject to utility, so we are trying to match the perfect budget
constraint subject to utility. This means that we are going to have another corner solution!

How do we find corner solutions for perfect substitutes? We compare marginal utility per dollar!
So for this case, we set up the relationship between marginal utilities per dollar.

5

px
=

2

py

So we now have a relationship where we know that the marginal utilities are equal. If MUx
px

> MUy
py

,
we will have a corner solution at the x intercept. But normally, for ordinary demand, this intercept
is given by I

px
. Is this still the case for Hicksian (compensated) demand? How has our constraint

changed?

Since our constraint is no longer reliant on income, we then have an intercept at x = u
px
. This leads

to a very staggering result: if MUx
px

> MUy
py

, then xx = u
px
.

Let’s solve the given problem with px = 10. We know that

u(x, y) = 5x+ 2y

And that px = 10. We can the marginal utilities per dollar to be:

5

10
=

2

py
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We can now see that marginal utility per dollar for good x is just 1
2 . This means that as long as

py is less than 4, we will only consume good y. Likewise, if py > 4, we will only consume good x.
We then have the following compensated demand:

xc =

8
>>><

>>>:

u

px
ifpy > 4,

2 [0,
u

px
] ifpy = 4,

0 ifpy < 4.

Et voila. These are the cases for xc.

5.5 Quasi-linear Example

These functions are going to be kind of brutal. Well, they can be. Let’s do an example of a simple
quasi-linear.

u(x, y) = ln(x) + y

1
x

1
=

px
py

x =
py
px

Throw this into our utility function:

u = ln(
py
px

) + y

Rearranging to solve for y:

yc = u� ln(
py
px

)

However, like with all quasi-linear functions, the value of y could be negative. So we have to see
whether y is positive. Setting y = 0 we can solve for the edge case:

u = ln(
py
px

)

So we conclude that the value of utility must be greater than the natural log of the price ratio in
order for the consumer to have yc > 0.
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